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Abstract: Owing to its excellent mechanical properties and aesthetic tooth-like appearance, lithium
disilicate glass–ceramic is more attractive as a crown for dental restorations. In this study, lithium
disilicate glass–ceramics were prepared from SiO2–Li2O–K2O–P2O5–CeO2 glass systems with various
Al2O3 contents. The mixed glass was then heat-treated at 600 ◦C and 800 ◦C for 2 h to form
glass–ceramic samples. Phase formation, microstructure, mechanical properties and bioactivity were
investigated. The phase formation analysis confirmed the presence of Li2Si2O5 in all the samples. The
glass–ceramic sample with an Al2O3 content of 1 wt% showed rod-like Li2Si2O5 crystals that could
contribute to the delay in crack propagation and demonstrated the highest mechanical properties.
Surface treatment with hydrofluoric acid followed by a silane-coupling agent provided the highest
micro-shear bond strength for all ceramic conditions, with no significant difference between ceramic
samples. The biocompatibility tests of the material showed that Al2O3-added lithium disilicate
glass–ceramic sample was bioactive, thus activating protein production and stimulating the alkaline
phosphatase (ALP) activity of osteoblast-like cells.

Keywords: lithium disilicate; heat treatment; glass-ceramic; crack propagation; Al2O3; crystals

1. Introduction

Glass-ceramics are made of crystalline phase and glass. They are specially formed com-
posite that are created through high-temperature melting, shaping, and heat treatment. Due
to their excellent mechanical strength, adjustable thermal expansion, chemical resistance,
low dielectric loss, and other properties, glass-ceramics are currently gaining considerable
attention in mechanical manufacturing, optics, electronics, aerospace, biomedical, and
construction applications [1–4]. In the dental restoration field, glass-ceramics are widely
employed due to their biocompatibility, ease of production, and chemical, physical, and
mechanical qualities that are extremely similar to those of human enamel [5]. Various
materials such as alumina, zirconia, leucite and lithium disilicate glass–ceramics have
been developed [6]. Among these materials, lithium disilicate (Li2Si2O5) glass–ceramics,
which are made of a crystalline ceramic and glass matrix, have drawn the most attention
among these materials because of their excellent mechanical characteristics and distinctive
translucency [7,8]. There has also been a significant increase in the number of reports on
the composition, structure, phase transformations and properties of Li2O–SiO2-based glass
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in recent years [9–16]. In this context, this research focuses on LS glass–ceramics, which can
be achieved by controlling the nucleation and crystallisation of the Li2O–SiO2 parent glass.

The effects of composition and heat treatment on LS glass–ceramics characteristics
have been the subject of numerous studies. A high mechanical strength can be achieved in
LS glass–ceramics by using P2O5 as a nucleating agent to form fine-grained interlocking
microstructures [10]. An improved fracture strength can be achieved by increasing the
radii of Rb and Cs ions in the lithium disilicate phase, which facilitates crystallisation [11].
When K2O, Rb2O and CsO were mixed, the fracture strength of the modified lithium
disilicate glass-ceramics significantly increased [12]. CeO2 has a small effect on the Li2Si2O5
phase percentage. The best heat-treatment temperatures for samples containing 1.5 wt%
CeO2 were 600 ◦C for 1 h and 800 ◦C for 1 h [13]. Lithium disilicate glass–ceramics can
be improved by adding K2O and Al2O3, increasing their mechanical properties by up
to 201 MPa [14,15]. The concentration of Al2O3 additive oxides on the phase formation
and mechanical properties of lithium disilicate glass–ceramics prepared by using the
conventional method was also studied by Leenakul and Kraipok [16]. The Al2O3 content
affected the crystallisation temperature and phase formation. The highest mechanical
strength was correlated with the rod-like crystals of Li2Si2O5. Despite the many studies
related to the effect of Al2O3 on the mechanical properties of Li2O–SiO2 glass systems, to
the best of our knowledge, there is no study of this effect on the modified Li2O–SiO2 glass
systems with CeO2 yet.

This study aims to increase the Al2O3 concentration and find the optimal processing
parameters for dental restorations. A SiO2–Li2O–K2O–P2O5–CeO2 glass system prepared
by using the conventional melt-quenching method was used as the base glass to examine
the effects of Al2O3 on the crystallisation behaviour, microstructure, mechanical properties,
and bioactivity of lithium disilicate glass-ceramics. The thermal properties of these glass–
ceramics were studied and managed using differential thermal analysis (DTA) to determine
the crystallinity of the major phase. To better understand how the Al2O3 content affects
the glass–ceramic properties, scanning electron microscopy (SEM) and X-ray diffraction
(XRD) were used to examine the heated samples. Furthermore, the phase formation
and mechanical and bioactive properties were tested to determine their suitability for
dental restorations.

2. Materials and Methods
2.1. Glass and Glass-Ceramic Preparation

The lithium disilicate glass composition had the following mol% composition: 67.4 SiO2,
27.0 Li2O, 2.0 K2O, 2.0 P2O5, and 1.5 CeO2. The LS glass was then supplemented with
Al2O3 in concentrations of 0.5, 1.0, and 1.5 mol%. LSA1, LSA2, and LSA3 were assigned to
the glass samples, respectively. The raw materials for creating LS glass were SiO2, Li2CO3,
K2CO3, (NH4)2HPO4, CeO2, and Al2O3 in the analytical grade from Sigma-Aldrich Pte.
Ltd. (Singapore). In a high-temperature furnace, these raw materials were combined and
melted in an alumina crucible for 2 h at 1450 ◦C. In order to create the glass specimens, the
molten glass was quenched in a metal mould that had been heated to 500 ◦C. Afterward,
the glass was annealed at 500 ◦C for 2 h before being cooled to room temperature. After
being annealed, the glass samples were heated through a two-stage crystallisation process
at 600 ◦C and 800 ◦C for 1 h while being heated at a rate of 2 ◦C/min in an air atmosphere
and then cooled to room temperature.

2.2. Differential Thermal Analysis (DTA)

Analytical grade Al2O3 powder served as the reference material, and a differential
thermal analyser (TG-DTA 8121, Rigaku, Japan) was used to determine the glass transition
temperatures (Tg), crystallisation temperatures (TC), and melting temperatures (Tm) in
an air atmosphere. The alumina crucible was heated at a rate of 10 ◦C/min from room
temperature to 1200 ◦C with about 10 mg of glass specimen powder.
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2.3. X-ray Powder Diffraction Analysis (XRD)

Cu-Kα radiation produced at 30 mA and 45 kV was used in the X-ray powder
diffraction analysis using an X-ray diffractometer (XRD) (SmartLab, Rigaku, Japan) with
a scanning range of 10◦ to 60◦ and a step size of 0.012◦. Using JCPDS numbers from the
ICDD-PDF2 database, the crystalline phases in the controlled heat-treated glass specimens
were identified.

2.4. Field Emission Scanning Electron Microscopy (FE-SEM)

The microstructure of the glass-ceramic specimens was examined using field emission
scanning electron microscopy (FE-SEM) (JSM-6335F, JEOL, Akishima, Tokyo, Japan)An ion
sputtering device (JFC-1200, JEOL, Akishima, Tokyo, Japan) was used to coat the fracture
surface of the specimens with gold for 10 s.

2.5. Mechanical test

Using Vickers hardness tests (Buehler, Karl Frank GMBH Type-38505, Lake Bluff, IL,
USA) with a constant load of 1 kg and a dwell time of 15 s, microhardness was used to
analyse the mechanical properties of the prepared glass-ceramics [17]. The equation below
was used to determine the Vickers hardness (HV):

HV =
1.8544P

d2 , (1)

where 1.8544, P, and d denote the constant geometrical factor for the diamond pyramid,
the applied load with the unit of kg, and the diagonal length of the indenter impression in
µm, respectively.

There are universal strength machines that can be used for ISO 6872 [18] with a
universal strength machine (AG-X plus, Shimadzu, Japan). The flexural modulus (E) was
calculated using the following equation [19]:

E =
L3m
4bd3 , (2)

where L is the support span (mm), m is the gradient (i.e., slope) of the initial straight-line
portion of the load deflection curve, (N/mm), and b and d are the width of the test beam
and thickness, respectively. A three-point-bending test with the fracture strength (σ) in the
unit of MPa and a crosshead speed of 0.01 mm/min, and the test span was 16 mm. The
following equation can be used to determine the three-point flexure:

σ =
3PI

2wb2 . (3)

In this case, P stands for the breaking load in N, while w, b, and l, respectively, are the
width, the thickness of the samples, and the test span in mm.

2.6. Micro-Shear Bond Strength (µSBS)

All the lithium disilicate glass-ceramic samples with various Al2O3 contents (LSA1,
LSA2 and LSA3) were selected and subjected to the µSBS test for the evaluation of their
bonding performance. Briefly, 20 ceramic plates (5 × 5 × 2 mm) of each ceramic condition
were prepared and embedded in a metal ring using epoxy resin. After polishing with
600, 800, 1000, and 1200 grit silicon carbide paper, the specimens were randomly divided
into 4 group according to 4 surface treatments: (1) no surface treatment; (2) silane coating
(Monobond N, Ivoclar Vivadent, Liechtenstein); (3) hydrofluoric acid (IPS® ceramic etching
gel, Ivoclar Vivadent, Liechtenstein); and (4) hydrofluoric acid and silane coating. The
treated ceramic surface was then cemented with 4 resin cement rods (Multilink® N, Ivoclar
Vivadent, Liechtenstein) by injecting resin cement into 4 plastic tubes (0.8 mm internal
diameter and 0.5 mm height). After removing the tubes and storing in water for 24 h, the



Materials 2022, 15, 8283 4 of 15

specimens were subjected to a µSBS test using universal testing machine (Instron® 5566 a
universal testing machine, Instron Engineering Corporation, Norwood, MA, USA) at the
crosshead speed of 0.5 mm/min. Data were analysed using a two-way ANOVA test with
Dunnett T3 post hoc test at a significant level of 0.05 (p < 0.05).

2.7. In Vitro Test for Biocompatibility of the Material
2.7.1. Preparation of the Tested Materials

Briefly, 2 × 2 × 2 mm synthetic material was established prior to a 30-min UV irradia-
tion process (257.7 nm, 40 W/cm2, ESCO UV-30A, Barnsley, England) on each side. The
irradiated material was transferred into each well of a sterile 96-well plate for cell culture.

2.7.2. Culture of Osteoblast-Like Cells

MG-63, an osteosarcoma cell line (ATCC, CRL1427) was used to test with the syn-
thetic material. The cell was cultured in Dulbecco’s modified Eagle’s medium (DMEM)
with the supplementation of a 10% fetal bovine serum (FBS), 2% N-(2-hydroxyethyl)
piperazine-N’-(2-ethane sulfonic acid) (HEPES), 1% non-essential amino acid, and 1%
penicillin/streptomycin until they reached 80% confluence. Then 1 × 104 cells were loaded
in the well containing the treated material with a volume of 100 µL and the plate was
incubated in a humidified incubator under 37 ◦C and 5% CO2 for 24 h. The fresh medium
was then replaced and the plate continued to be incubated for 48 and 96 h.

2.7.3. Cell Attachment, Cell Viability, and Cell Proliferation by MTT Assay

Briefly, a 5 mg/mL methyl thiazolyl diphenyl-tetrazolium bromide (MTT) solution
was prepared in a sterile phosphate-buffered saline (PBS) solution, pH 7.4 and added into
each well at 10 µL. After that, the plate continued to be incubated for 4 h to allow the
formation of the formazan crystal by viable cells. The media supernatant was then replaced
with 100 µL dimethyl sulfoxide (DMSO). The absorbance at 540 nm was then recorded with
a plate reader machine.

2.7.4. Preparation of the Cell Lysate

The celll layer was primarily washed twice with 37 ◦C sterile PBS prior to the addition
of 50 µL cell lysis buffer. The cells were exposed to the lysis buffer at room temperature
for 15 min to completely lyse. The lysate was collected and stored in an Eppendorf pipette
under −20 ◦C for further analyses.

2.7.5. Total Protein Determination by Bradford Assay

The total protein content was analysed in 5 µL of the cell lysate by mixing with 100 µL
of the working Bradford solution. The complete reaction was allowed to incubate for
15 min at room temperature. The absorbance was recorded with a plate reader at 595 nm.
Like the sample, standard bovine serum albumin (BSA) was used to establish the standard
curve for the deduction of total protein content in each sample.

2.7.6. Alkaline Phosphatase (ALP) Activity Determination

Briefly, 20 µL of the lysate was mixed with 80 µL of 1 mg/mL p-nitrophenolphosphate
in a diethanolamine buffer pH 9.8 for 3 h and the yellow product was determined by with
a plate reader to measure the absorbance at 405 nm. Along with the p-nitophenol (pNP)
standard, ALP activity could be elucidated and expressed in the specific activity per mg of
the total protein.

2.7.7. Statistical Analysis

ANOVA followed by Tukey’s pos-hoc test was used when the ANOVA result showed
a significant difference. The p-value was set at 0.05 in all the statistical procedures.
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3. Results and Discussion
3.1. Thermal Analysis

Figure 1 illustrates the effect of the Al2O3 concentration on the thermal parameters of
the glass specimens by performing DTA at a heating rate of 10 ◦C/min while maintaining
an air atmosphere throughout the experiment. The letters Tg, TC1, TC2, and Tm indicate
the temperatures at which the glass transition, first crystallisation, second crystallisation,
and melting temperature occur in the DTA curves. Exothermic peaks indicate that the
glass is crystallised, whereas endothermic peaks indicate that crystalline phases dissolve
within the glass matrix. In the ranges of 663–668 ◦C and 825–845 ◦C, the results for each
glass sample showed two exothermic peaks. The Al2O3 content was also found to have a
negligible effect on the second crystallisation and melting temperature, which corresponds
to a previous study [16]. It is possible that this is because Al2O3 typically makes the glass
more viscous, which is caused by the elimination of nonbridging oxygen sites [14]. In
addition, TC1 is the temperature at which the lithium metasilicate (Li2SiO3) phase begins
to crystallise. The second crystallisation temperature, TC2, denotes the phase transition at
which the crystallised LM phase changes into the lithium disilicate (Li2Si2O5) phase [20–22].
According to the DTA results, the heat treatment condition was selected as two stages at
600 ◦C and 800 ◦C for 2 h at each temperature. It was speculated that the preliminary
glass nucleation would occur at the initial stage at 600 ◦C and then the crystalline phase of
Li2Si2O5 would start to occur at the final stage at 800 ◦C.

Materials 2022, 15, x FOR PEER REVIEW 5 of 15 
 

 

2.7.7. Statistical Analysis 
ANOVA followed by Tukey’s pos-hoc test was used when the ANOVA result 

showed a significant difference. The p-value was set at 0.05 in all the statistical procedures. 

3. Results and Discussion 
3.1. Thermal Analysis 

Figure 1 illustrates the effect of the Al2O3 concentration on the thermal parameters of 
the glass specimens by performing DTA at a heating rate of 10 °C/min while maintaining 
an air atmosphere throughout the experiment. The letters Tg, TC1, TC2, and Tm indicate the 
temperatures at which the glass transition, first crystallisation, second crystallisation, and 
melting temperature occur in the DTA curves. Exothermic peaks indicate that the glass is 
crystallised, whereas endothermic peaks indicate that crystalline phases dissolve within 
the glass matrix. In the ranges of 663–668 °C and 825–845 °C, the results for each glass 
sample showed two exothermic peaks. The Al2O3 content was also found to have a negli-
gible effect on the second crystallisation and melting temperature, which corresponds to 
a previous study [16]. It is possible that this is because Al2O3 typically makes the glass 
more viscous, which is caused by the elimination of nonbridging oxygen sites [14]. In ad-
dition, TC1 is the temperature at which the lithium metasilicate (Li2SiO3) phase begins to 
crystallise. The second crystallisation temperature, TC2, denotes the phase transition at 
which the crystallised LM phase changes into the lithium disilicate (Li2Si2O5) phase [20–
22]. According to the DTA results, the heat treatment condition was selected as two stages 
at 600 °C and 800 °C for 2 h at each temperature. It was speculated that the preliminary 
glass nucleation would occur at the initial stage at 600 °C and then the crystalline phase 
of Li2Si2O5 would start to occur at the final stage at 800 °C. 

 
Figure 1. DTA curves of Li-Si glass powder with different Al2O3 contents. 

3.2. Phase Formation 
The phase formation of the glass-ceramic samples was investigated by forming XRD 

analysis, which showed the precipitating crystalline phase as a function of the various 
Al2O3 contents. The XRD results of all the LSA glass-ceramic samples after heat treatment 
at 600 °C and 800 °C for 2 h are shown in Figure 2. The XRD results revealed that Li2Si2O5 
was the main crystalline phase in all the samples. The highest intensity of the Li2Si2O5 peak 
was obtained when an Al2O3 content of 1%mol was added, and it coexisted with a small 

Figure 1. DTA curves of Li-Si glass powder with different Al2O3 contents.

3.2. Phase Formation

The phase formation of the glass-ceramic samples was investigated by forming XRD
analysis, which showed the precipitating crystalline phase as a function of the various
Al2O3 contents. The XRD results of all the LSA glass-ceramic samples after heat treatment
at 600 ◦C and 800 ◦C for 2 h are shown in Figure 2. The XRD results revealed that Li2Si2O5
was the main crystalline phase in all the samples. The highest intensity of the Li2Si2O5
peak was obtained when an Al2O3 content of 1%mol was added, and it coexisted with a
small amount of cristobalite phase. This finding is consistent with the DTA results at 800
◦C; this is close to the crystalline temperature of all the glass samples, especially LSA1,
which showed a Tc at 825 ◦C, while LSA2 and LSA3 were at 830 ◦C and 845 ◦C, respectively.
Therefore, the crystallisation reaction of Li2Si2O5 was more complete, and the highest
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intensity peak was observed. The crystalline phase of Li2Si2O5 was transformed in two
steps via the following reaction:

Li2O (glass) + SiO2 (glass)→ Li2SiO3 (crystal), (4)

Li2SiO3 (crystal) + SiO2 (crystal)→ Li2Si2O5 (crystal). (5)
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Generally, in this Li2O–SiO2 glass system, the first crystalline phase of Li2SiO3 is
formed by a reaction between Li2O and SiO2 (Equation (4)) at a lower temperature of
550–650 ◦C [22–24]. However, when the heat treatment temperature increased, Li2SiO3
became unstable and transformed into the more stable phase of Li2Si2O5, as shown in
Equation (5).

The amounts of the Li2Si2O5 phase decreased with the increasing Al2O3 content, while
the cristobalite phase disappeared and CeO2 started to form in the LSA2 samples. Moreover,
the CeO2 phase remained almost unchanged with a further increase in the Al2O3 content
in LSA3. This may also explain why the cristobalite phase is metastable and cannot be
retained at higher Al2O3 contents. However, the reaction that transformed to Li2Si2O5
was incomplete and showed impurities in the CeO2 phase in the LSA2 and LSA3 samples.
This may be attribute to the addition of Al2O3 leading to a decrease in the crystal growth
velocity [25], so when the Al2O3 content exceeded the solution limit (LSA2 and LSA3), a
foreign CeO2 phase was residual in the glass-ceramic samples, which led to the impurity of
the materials.

3.3. SEM Analysis

Figure 3 shows the microstructure of the surface glass–ceramic samples. The results
illustrated that the surfaces of the LSA1 and LSA2 samples showed the formation of a
rod-like Li2Si2O5 phase that was randomly dispersed. However, the morphology of the
crystalline phase of the LSA3 sample was different. With the addition of Al2O3 to 1.5 mol%,
the grain size that was changed to higher increased, and the number of rod-like shapes
gradually decreased. Moreover, the shape of the crystals was slightly transformed to the
spherical shape of Li2SiO3, presenting a polymorphic microstructure [26].
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These results were confirmed by the fracture surface of the glass–ceramic samples
in Figure 3, which shows that in the LSA1 samples, the crystalline shape is rod-like and
distributed on the glass matrix of the glass–ceramics. Generally, cracks are always formed
at the weaker interfaces of the crystals and propagate through the residual glass ma-
trix. However, in LSA1, the crystal morphology is rod-like. It has a closely packed and
multi-directional interlocking microstructure of Li2Si2O5 that deflects and delays crack
propagation [27]. Microcracks were formed inside the matrix of glass–ceramics with curves
and intersecting paths. This was related to the interlocking structure of Li2Si2O5, which
prevented crack propagation in the samples. On the other hand, with increasing Al2O3
content, the density of Li2Si2O5 crystals decreased and became spherical coexisting with
the rod shape in LSA3. Notably, increasing the Al2O3 content depressed the reaction of
Li2Si2O5 but consumed the Li2SiO3 crystal.
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3.4. Mechanical Properties

The improved mechanical properties of glass–ceramics are also a consequence of their
higher crystallinity, appropriate morphology of precipitated crystals and low porosity [16,26].
The flexural strength, the flexural modulus of elasticity, and microhardness values of the
glass-ceramic samples with different Al2O3 are shown in Figures 4 and 5. Similar trends
can be observed in all the mechanical properties measured in this study with respect
to the Al2O3 contents. The highest mechanical strength values were obtained from the
glass–ceramics sample upon adding Al2O3 to 1.0 mol% and slightly decreased as the
Al2O3 content was increased to 1.5 mol%. A possible explanation is that LSA1 samples
contained the highest crystalline phase of rod-like Li2Si2O5, which formed an interlocking
microstructure to prevent cracks within the samples. In addition, the increasing Al2O3 had
the effect of decreasing the densification of the crystal, which is related to the amount of
glassy phase and its viscosity [28]. In the samples with higher Al2O3 content, the amount of
glassy phase was reduced, and the viscosity of the glassy phase increased, so the addition
of a crystalline phase could inhibit densification [28]. This is consistent with the work of
Fernandes et al. [29] reporting that the glass sample with the lowest Al2O3 increased the
densification of the crystal which resulted in an improvement in the mechanical properties
of lithium disilicate glass-ceramics.

The mechanical strength values of the specimens in the present study were close to
those of the commercial lithium disilicate developed by Ivoclar Vivadent company and
other studies, as shown in Table 1. Commercial lithium disilicate has a flexural strength and
Vickers hardness values of 4400 and 5800 MPa, respectively. These excellent mechanical
properties can be attributed to the development of Li2Si2O5 in the sample.
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Table 1. Mechanical properties of dental glass-ceramic.

Materials
Commercial
Leucite (IPS
Empress®)

Commercial
Leucite (IPS
Empress 2)

Commercial
Lithium Disilicate Lithium Disilicate Lithium Disilicate

Flexural strength
(MPa) 90–130 400 400 350–450 316.72

Vickers hardness
(MPa) 4001–6500 6500 5800 4001–6500 6685

Ref. [30,31] [32] [28] [8,33] This study (LSA1)
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3.5. Microshear Bond Strength

The cementation of resin cement for ceramic restorations is a crucial process for clinical
success [A1]. Various surface treatments have been used before cementation to improve the
bond strength of dental ceramics [34,35]. The micro-shear bond strength test was selected
in this study to evaluate the bonding performance owing to its benefits of more uniform
stress distribution and lack of damage to specimens that are suitable for the glass–ceramic
material [36,37].

In addition to the different mechanical properties, there was no significant difference
in µSBS among the three group of samples (LSA1, LSA2 and LSA3) of lithium disilicate
glass–ceramics. This might be due to the lower effect of the mechanical properties on the
bonding ability between the resin cement and the selected ceramics, as shown in Table 2.
However, mechanical properties are crucial and must be considered because ceramics with
better mechanical properties provide a longer lifetime for all ceramic restorations [38,39].

The mean µSBS of all the groups with different surface treatments was significantly
higher than that of the control group. This result could be attributed to the effectiveness of
the chemical bond created by the silane coupling agent and the micromechanical retention
created through hydrofluoric acid etching.

Silane promotes the adhesion between the functional methacrylate group of resin
cement and the hydroxyl group of the silica-based ceramic. Additionally, a hydrophobic
surface can be created by the application of a silane-coupling agent, which allows resin
cement to flow [40–42].

Table 2. Mean and standard deviation of micro-shear bond strengths.

Surface Treatment
Microshear Bond Strength (Mean ± SD; MPa)

LSA1 LSA2 LSA3

No surface treatment (Control) 3.69 ± 0.56 a 3.47 ± 0.58 a 3.23 ± 0.48 a

Silane coating 34.20 ± 2.57 c 37.21 ± 3.43 c 37.97 ± 3.07 c

Hydrofluoric Acid 20.92 ± 2.52 b 20.74 ± 2.85 b 19.34 ± 3.48 b

Hydrofluoric acid + Silane coating 45.34 ± 2.40 d 47.57 ± 4.05 d 47.89 ± 3.10 d

Different superscript letters indicate statistical significance (p < 0.05).

Hydrofluoric acid can dissolve the glass matrix and increase the surface area for
micromechanical retention between resin cement and the etched glass surface [43–45],
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resulting in increased bond strength. However, the lithium disilicate glass–ceramics used
in this study contained Al2O3, which can neutralise the acidity of hydrofluoric acid and
impair the etching ability. Moreover, the penetration of resin cement could be interfered
with by the insoluble salt formed owing to the interaction between aluminium ions and
hydrofluoric acid [46]. This may be the reason for the low µSBS in the group treated with
hydrofluoric acid.

The highest µSBS value was obtained by etching with hydrofluoric acid, followed by
the application of a silane coupling agent. This method has been recommended as the most
effective surface treatment for glass–ceramics [45,47–49]. This result might be due to the
synergistic combination of mechanical and chemical retention, as the increased surface area
created by etching provides more surface area for chemical bonds.

3.6. Cellular Activity

Although the results showed lower cell numbers attached to LSA3, there was no signif-
icant difference among the others (Figure 6). The attachment of the cells onto the surface of
the glass-ceramic samples were not affected by the observation period (6–24 h), indicating
that the glass-ceramics allowed MG-63 cell attachment, regardless of the concentration
of Al2O3.
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Figure 6. MG-63 cell attachment to lithium disilicate glass-ceramics with various Al2O3. MTT assay
of MG-63 cells attached to lithium disilicate glass-ceramics with various Al2O3 for 6 h, 12 h, and 24 h.
There was no statistical difference among glass-ceramics types and time points.

Lithium disilicate glass-ceramics with various Al2O3 were biocompatible with MG-63
cells. Although the MG-63 viability cultured on LSA1 significantly decreased compared
with that on LSA2 and LSA3 after 4 days of incubation, this difference was dissipated after
7 days of incubation (Figure 7). The viability of the cells significantly increased over time
compared with that at the early time point. This result confirmed the biocompatibility of
all types of glasses owing to the ability of MG-63 cell proliferation on all types of glasses.

Lithium disilicate glass-ceramic material with various concentrations of Al2O3-activated
protein was produced by the MG-63 cells. The difference in the total protein content was
significantly higher in the MG-63 cells cultured with LSA1 after 4 days of culture; however,
these contents were similar in all material types after 7 days of culture (Figure 8). When
compared between time points, the protein content was significantly increased in all the
investigated materials. Taken together, the proliferation results confirmed that the glass
specimens, regardless of the presence of aluminium, were biocompatible with MG-63 cells.
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Figure 7. Viability and proliferation of MG-63 cells. Lithium disilicate glass-ceramics with various
Al2O3 were assessed in terms of biocompatibility with MG-63 cells using MTT assay for 4 (D.4) and
7 days (D.7). The results were from a triplicate (n = 3) experiment and the statistical difference was
tested when p < 0.05, which is represented by * (among the material types in each investigation
period) and by # (between two investigation periods among the same material types).

Materials 2022, 15, x FOR PEER REVIEW 12 of 15 
 

 

in all the investigated materials. Taken together, the proliferation results confirmed that 
the glass specimens, regardless of the presence of aluminium, were biocompatible with 
MG-63 cells. 

 
Figure 8. MG-63 protein contents. Total MG-63 protein production after the culture with lithium 
disilicate glass (LSA3) or lithium disilicate glass supplemented with aluminium at 0.5% mol (LSA1) 
and with aluminium at 1% mol (LSA2) for 4 (D.4) and 7 days (D.7), as determined with Bradford 
assay. The results were from a triplicate (n = 3) experiment, and the statistical difference was tested 
when p < 0.05, which is represented by * (among the material types in each investigation period) 
and by # (between two investigation periods among the same material types). 

In terms of the alkaline phosphatase (ALP) activity of MG-63, the MG-63 cells cul-
tured with lithium disilicate glass-ceramics with various Al2O3 for 4 (D.4) and 7 days (D.7) 
were assessed for the ALP activity by performing p-nitrophenolphosphate conversion as-
say, and the results are shown in Figure 9. Regarding the expression of a bone formation 
marker, the ALP activity was not significantly expressed in the MG-63 cells cultured with 
different types of lithium disilicate glass-ceramics after 4 and 7 days of investigation. Like-
wise, the ALP activity expression trend was slightly reduced during prolonged investiga-
tion periods in all the tested glass-ceramics. This suggests that lithium disilicate glass-ce-
ramics, regardless of Al2O3, are biologically active, allowing MG-63 cells to normally ex-
press the ALP activity, leading to the regulation of bone formation. 

 

Figure 8. MG-63 protein contents. Total MG-63 protein production after the culture with lithium
disilicate glass (LSA3) or lithium disilicate glass supplemented with aluminium at 0.5% mol (LSA1)
and with aluminium at 1% mol (LSA2) for 4 (D.4) and 7 days (D.7), as determined with Bradford
assay. The results were from a triplicate (n = 3) experiment, and the statistical difference was tested
when p < 0.05, which is represented by * (among the material types in each investigation period) and
by # (between two investigation periods among the same material types).

In terms of the alkaline phosphatase (ALP) activity of MG-63, the MG-63 cells cultured
with lithium disilicate glass-ceramics with various Al2O3 for 4 (D.4) and 7 days (D.7) were
assessed for the ALP activity by performing p-nitrophenolphosphate conversion assay, and
the results are shown in Figure 9. Regarding the expression of a bone formation marker,
the ALP activity was not significantly expressed in the MG-63 cells cultured with different
types of lithium disilicate glass-ceramics after 4 and 7 days of investigation. Likewise,
the ALP activity expression trend was slightly reduced during prolonged investigation
periods in all the tested glass-ceramics. This suggests that lithium disilicate glass-ceramics,
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regardless of Al2O3, are biologically active, allowing MG-63 cells to normally express the
ALP activity, leading to the regulation of bone formation.
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IPS e. max is a lithium disilicate glass–ceramic ingot that delivers high-strength and
highly aesthetic materials for press technology. Figure 10 shows LSA3 before and after
heating at 600/800 ◦C. This sample can be pressed into the shape of a dental crown.
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4. Conclusions

The aim of this study was to investigate the effect of Al2O3 at the three different
contents of 0.5, 1.0 and 1.5 mol% on the mechanical properties of the modified Li2O–SiO2
glass systems with CeO2. The Al2O3 content played a major role in phase formation
changes in glass-ceramic samples. With increasing the content of Al2O3, the relative
content of the Li2Si2O5 phase decreased. The data showed that the LSA1 had the highest
crystallinity of Li2Si2O5 as well as the highest mechanical strength correlated with the
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homogeneous crystallisation of interlocked rod-like Li2Si2O5. In spite of the differences
in the mechanical strength, of the samples, all the ceramic conditions showed the same
micro-shear bond strength for each surface treatment. An MTT assay was used to test
the cellular adhesion and biocompatibility of lithium disilicate glass-ceramic sample for
all three contents of Al2O3. Even though the results were insignificant among the three
samples, can be reasonably claimed that these samples are suitable for dental applications.
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