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Abstract

In this paper, we explore the existence and uniqueness of fixed

points for the new constructed contraction mapping on dislocated

quasi-metric spaces by using Geraghty contraction and F -contraction.

Moreover, we support our results by a couple of non-trivial examples.

1 Introduction

Let Ω be the family of all functions β : [0,∞) → [0, 1) which satisfy the
condition

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0. (1.1)
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Using such a function, Geraghty [1] proved the following theorem:

Theorem 1.1. [1] Let (X, d) be a complete metric space and let T be a self-
mapping on X. Suppose that there exists β ∈ Ω such that, for all u, v ∈ X,

d(Tu, Tv) ≤ β(d(u, v))d(u, v), (1.2)

then T has a unique fixed point z ∈ X and {T nz} converges to z for all
z ∈ X.

Many authors have discovered this theorem as can be seen in [6, 7, 8, 9].

Definition 1.2. [2] Let (X, d) be a metric space. The mapping T : X → X

is called an F -contraction, if there exist F ∈ F and τ > 0 such that, for all
u, v ∈ X,

d(Tu, Tv) > 0 ⇒ τ + F (d(Tu, Tv)) ≤ F (d(u, v)), (1.3)

where F : R
+ → R is strictly increasing limn→∞ F (αn) = −∞ if and

only if limn→∞ αn = 0 and there exists a number k ∈ (0, 1) such that
limα→0+ α

kF (α) = −∞.

The family of all functions F : (0,∞) → R is denoted by F if F satisfies
the following conditions:

(F1) F is strictly increasing;

(F2) For every sequence {αn} in (0,∞), we have limn→∞ F (αn) = −∞ if
and only if limn→∞ αn = 0;

(F3) There exists a number k ∈ (0, 1) such that limα→0+ α
kF (α) = −∞.

Definition 1.3. [4] Let X be a nonempty set and let d : X ×X → R
+ be a

function such that the following are satisfied:

(i) d(u, v) = d(v, u) = 0 implies that u = v;

(ii) d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w ∈ X.

Then d is called dislocated quasi-metric on X and the pair (X, d) is called a
dislocated quasi-metric space.

Definition 1.4. [3] Let T : X → X be a self-mapping and let α : X ×X →
R

+ be a function. Then T is said to be triangular α-orbital admissible if T
is α-orbital admissible and α(u, v) ≥ 1, α(v, Tv) ≥ 1 imply α(u, Tv) ≥ 1.
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Lemma 1.5. [3] Let T : X → X be a triangular α-orbital admissible map-
ping. Assume that there exists u1 ∈ X such that α(u1, Tu1) ≥ 1. Define a
sequence {un} by un+1 = Tun. Then α(un, um) ≥ 1 for all m,n ∈ N with
n < m.

Definition 1.6. [5] Let T : X → X be a self-mapping on a metric space.
For each u ∈ X and for any positive whole number n,

OT (u, n) = {u, Tu, . . . , T nu} and OT (u,∞) = {u, Tu, . . . , T nu, . . .}.

The set OT (u,∞) is called the orbit of T at x and the metric space X is called
T -orbitally complete if every Cauchy sequence in OT (u,∞) is convergent in
X.

The purpose of this paper is to prove some fixed point results in dislocated
quasi-metric space using a Geraghty type generalized F -contraction.

2 Main results

Definition 2.1. Let (X, d) be a dislocated quasi-metric space and let α :
X × X → R

+ be a function. A self-mapping T : X → X is called an
(α, β, F )-Geraghty type contraction mapping if there exists β ∈ Ω such that,
for all u, v ∈ X, with τ > 0, d(Tu, Tv) > 0 and α(u, v) ≥ 1,

α(u, v)(τ + F (d(Tu, Tv))) ≤ β(MT (u, v))F (MT (u, v)), (2.4)

where

MT (u, v) = max

{

d(u, Tu), d(v, Tv),
(1 + d(u, Tu))d(v, Tv)

1 + d(u, v)

}

.

Theorem 2.2. Let (X, d) be a T -orbitally complete dislocated quasi-metric
space such that T : X → X is a self-mapping. Suppose α : X ×X → R

+ is
a function satisfying the following conditions:

(i) T is an (α, β, F )-Geraghty type contraction mapping;

(ii) T is triangular α-orbital admissible mapping;

(iii) There exists u1 ∈ X such that α(u1, Tu1) ≥ 1.

Then T has a fixed point z ∈ X and {T nu1} converges to z.
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Proof. Let u1 ∈ X such that α(u1, Tu1) ≥ 1. Define a sequence {un} by
un+1 = T nu, for n ≥ 1. If un = un+1 for some n, then obviously T has a
fixed point. Consequently, throughout the proof, we suppose that un 6= un+1

for all n ≥ 1. By Lemma 1.5, used recursively, we have

α(un, un+1) ≥ 1 ∀n ≥ 1. (2.5)

By (2.4), we get

τ + F (d(T nu, T n+1u))) ≤ τ + F (d(T n−1u, T nu)))

≤ α(T n−1u, T nu)(τ + F (d(TT n−1u, TT nu)))

≤ β(MT (T
n−1u, T nu))F (MT (T

n−1u, T nu)),

(2.6)

where

MT (T
n−1u, T nu)

= max

{

d(T n−1u, T nu), d(T nu, T n+1u),
(1 + d(T n−1u, T nu))d(T nu, T n+1u)

1 + d(T n−1u, T nu)

}

= max{d(T n−1u, T nu), d(T nu, T n+1u)}.

The assertion MT (T
n−1u, T nu) = d(T nu, T n+1u) is not true. This is because

τ + F (d(T nu, T n+1u))) < F (d(T nu, T n+1u)) (2.7)

is a contradiction. Consequently, d(T nu, T n+1u) < d(T n−1u, T nu). Thus,

τ + F (d(T nu, T n+1u))) < F (d(T n−1u, T nu)) (2.8)

or
F (d(T nu, T n+1u))) ≤ F (d(T n−1u, T nu))− τ. (2.9)

In general, one can get

F (d(T nu, T n+1u))) ≤ F (d(T n−1u, T nu))− nτ. (2.10)

Letting n→ ∞ in (2.10) shows that limn→∞ F (d(T n−1u, T nu)) = −∞. Hence

lim
n→∞

d(T n−1u, T nu) = 0. (2.11)

Suppose that the sequence {un} is not Cauchy. Then there exists ǫ > 0
and we can define two subsequences {Tmlu} and {T nlu} of the sequence
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{T nu} such that, for any nl > ml > l, d(Tmlu, T nlu) ≥ ǫ, but d(Tmlu, T nl−1u) <
ǫ. Observe that

ǫ ≤ d(Tmlu, T nlu) ≤ d(Tmlu, T nl−1u) + d(T nl−1u, T nlu)

≤ d(Tmlu, Tml−1u) + d(Tml−1u, T nlu) + 2d(T nl−1u, T nlu)

< d(Tmlu, Tml−1u) + ǫ+ 2d(T nl−1u, T nlu).

(2.12)

Since d(T nu, T n+1u) 6= 0, we get

lim
l→∞

d(Tmlu, T nlu) = lim
l→∞

d(Tmlu, T nl−1u) = lim
l→∞

d(Tml−1u, T nl−1u)

= lim
l→∞

d(Tml−1u, T nlu) = ǫ.
(2.13)

Since T is an (α, β, F )-Geraghty type contraction mapping and α(u, v) ≥ 1,
we obtain

τ + F (d(Tml−1u, T nl−1u)) ≤ α(Tml−1u, T nl−1u)(τ + F (d(Tml−1u, T nl−1u)))

≤ β(M(Tml−1u, T nl−1u))F (M(Tml−1u, T nl−1u)),
(2.14)

where
M(Tml−1u, T nl−1u)

= max

{

d(Tml−1u, Tmlu), d(T nl−1u, T nlu),

(1 + d(Tml−1u, Tmlu))d(T nl−1u, T nlu)

1 + d(Tml−1u, T nl−1u)

}

.

(2.15)

Letting l → ∞ in (2.15) and using (2.13), we obtain

lim
l→∞

M(Tml−1u, T nl−1u) = ǫ. (2.16)

Since liml→∞ β(M(Tml−1u, T nl−1u)) ≤ 1, we conclude that

τ + F (ǫ) ≤ β(ǫ)F (ǫ) ≤ F (ǫ), (2.17)

a contradiction since τ > 0. Therefore,

lim
l→∞

d(Tmlu, T nl) = 0. (2.18)

It follows that {T nu} is a Cauchy sequence. From T -orbitally complete, there
exists z ∈ X such that T nu → z as n → ∞. To show that Tz = z, suppose
that

d(z, T z) = lim
n→∞

d(T nu, Tz) > 0.
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We have

τ + F (d(un+1u, Tz))) = τ + F (d(T nu, Tz)) ≤ α(T n−1u, z)(τ + F (d(T nu, Tz)))

≤ β(MT (T
n−1u, z))F (MT (T

n−1u, z)),
(2.19)

where

MT (T
n−1u, z) = max

{

d(T n−1u, T nu), d(z, T z),
(1 + d(T n−1u, T nu))d(z, T z)

1 + d(T n−1u, z)

}

.

Letting n→ ∞, we get

lim
i→∞

MT (T
n−1u, z) = max

{

d(z, z), d(z, T z),
(1 + d(z, z))d(z, T z)

1 + d(z, z)

}

= d(z, T z).

Taking the limits as n→ ∞ in (2.19), we get

F (d(z, T z)) ≤ β(d(z, T z)))F (d(z, T z))− τ ≤ F (d(z, T z))− τ,

which is a contradiction. Therefore, we obtain d(z, T z) = 0. Similarly,
d(Tz, z) = 0. That is, z = Tz and the fixed point of T is z.

Theorem 2.3. Under all the conditions of Theorem 2.2, we find that z is a
unique fixed point of T .

Proof. From the proof of Theorem 2.2, z is a fixed point of T . Assume, to
get a contradiction, that z and w are distinct fixed points of T . By condition
(ii) in Theorem 2.2, we get

τ + F (d(z, w)) = τ + F (d(Tz, Tw))

≤ α(z, w)(τ + F (d(Tz, Tw))) ≤ β(MT (z, w)F (MT (z, w),

where

MT (z, w) = max

{

d(z, T z), d(w, Tw),
(1 + d(z, Tw))d(w, Tw)

1 + d(z, w)

}

= d(z, w).

Thus
τ + F (d(z, w)) ≤ β(d(z, w))F (d(z, w)) ≤ F (d(z, w)),

which is a contradiction since τ > 0. So z = w. Hence, T has a unique fixed
point.
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Corollary 2.4. Let (X, d) be a complete dislocated quasi-metric space such
that T : X → X is a self-mapping for all u, v ∈ X, with τ > 0, d(Tu, Tv) > 0
and β ∈ Ω,

τ + F (d(Tu, Tv)) ≤ β(max{d(u, Tu), d(v, Tv)})F (max{d(u, Tu), d(v, Tv)}).
(2.20)

Then T has a fixed point z ∈ X.

Example 2.5. Let X = [0,∞) and a dislocated quasi-metric d(u, v) = u+ v

for all u, v ∈ X. Let β(t) = 1

1+t
for all t > 0. Then β ∈ Ω. Define a mapping

T : X → X and a function α : X ×X → [0,∞) by

T (u) =

{u

5
, if u ∈ [0, 3],

4u, if u > 3,
and α(u, v) =

{

1 if 0 ≤ u, v ≤ 3,

0, otherwise.

Define the function F : R+ → R by F (u) = ln(u) for all u ∈ R
+ and τ > 0.

As u, v ∈ X, τ = ln(1.2), by taking u1 = 3, we have

case (i): If 0 ≤ u, v ≤ 3, then α(u, v) = 1 and

α(u, v)(τ + F (d(Tu, Tv))) = ln(1.2) + ln(
u+ v

5
)

≤
ln(MT (u, v))

1 +MT (u, v)
= β(MT (u, v))F (MT (u, v)).

Thus α(u, v)(τ +F (d(Tu, Tv))) ≤ β(MT (u, v))F (MT (u, v)) for 0 ≤ u, v ≤ 3.

case (ii): If u ∈ [0, 3], v > 3, or u, v > 3, then α(u, v) = 0 and we have

α(u, v)(τ + F (d(Tu, Tv))) ≤ β(MT (u, v))F (MT (u, v)).

Hence, all assumptions of Theorems 2.2 and 2.3 are satisfied and so T has
the unique fixed point z = 0.

Example 2.6. Let X = {{0} ∪ { 1

n
: n ∈ N} ∪ N} and a dislocated quasi-

metric d(u, v) = |u− v|+ u for all u, v ∈ X. Let β(t) = 1

t
for all t > 0, then

β ∈ Ω. Define a mapping T : X → X and a function α : X ×X → [0,∞) by

T (u) =







9

u
, if u ≥ 3,

u, otherwise,
and α(u, v) = 1 for all u, v ∈ X.
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Define the function F : R+ → R by F (u) = ln(u) for all u ∈ R
+ and τ > 0.

As u, v ∈ X, τ = ln(1.2), by taking u1 = 3, we have α(u, v) = 1 and

α(u, v)(τ + F (d(Tu, Tv))) = ln(1.2) + ln(

∣

∣

∣

∣

9

u
−

9

v

∣

∣

∣

∣

+
9

u
)

≤
ln(MT (u, v))

MT (u, v)
= β(MT (u, v))F (MT (u, v)).

Thus, α(u, v)(τ+F (d(Tu, Tv))) ≤ β(MT (u, v))F (MT (u, v)) for all u, v ∈ X.
Hence, all assumptions of Theorems 2.2 and 2.3 are satisfied and so T

has the unique fixed point z = 3.
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